

碧云天生物技术/Beyotime Biotechnology 订货热线: 400-168-3301或800-8283301

订货e-mail: order@beyotime.com 技术咨询: info@beyotime.com 网址: http://www.beyotime.com

Dovitinib (FLT3抑制剂)

产品编号	产品名称	包装
SC1036-10mM	Dovitinib (FLT3抑制剂)	10mM×0.2ml
SC1036-5mg	Dovitinib (FLT3抑制剂)	5mg
SC1036-25mg	Dovitinib (FLT3抑制剂)	25mg

产品简介:

▶ 化学信息:

化学名	(3Z)-4-amino-5-fluoro-3-[5-(4-methylpiperazin-1-yl)-1,3-dihydrobenzimidazol-2-ylidene]quinolin-2-one	
简称	Dovitinib	
别名	TKI-258, TKI 258, TKI258, CHIR-258, CHIR 258,	
	CHIR258	
中文名	多韦替尼	
化学式	$C_{21}H_{21}FN_6O$	
分子量	392.43	
CAS号	405169-16-6	
纯度	98%	
溶剂/溶解度	Water <1mg/ml; DMSO 30mg/ml; Ethanol <1mg/ml	
溶液配制	5mg加入1.27ml DMSO, 或每3.92mg加入1ml DMSO,	
	配制成10mM溶液。SC1036-10mM用DMSO配制。	

▶ 生物信息:

<u> </u>					
产品描述	Dovitinib (TKI-258, CHIR-258)是一种多靶点的RTK抑制剂,在无细胞试验中对III型(FLT3/c-Kit)作用最强,IC50为1nM/2nM,同时也作用于IV类(FGFR1/3)和V类(VEGFR1-4)RTKs,IC50为8-13nM,但对				
) низихс	InsR、EGFR、c-Met、EphA2、Tie2、IGF-1R和HER2作用较弱。Phase 4。			230/J0 13mv1, <u>12</u> //J	
信号通路	Angiogenesis; Prote	Angiogenesis; Protein Tyrosine Kinase			
靶点	FLT3	c-Kit	FGFR1	VEGFR3/FLT4	FGFR3
IC50	1nM	2nM	8nM	8nM	9nM
体外研究	Dovitinib有效抑制FGFR1/3和VEFFR1-2,IC50为8-13nM。Dovitinib对InsR、EGFR、c-Met、EphrinA2、Tie2、IGFR1和HER2抑制效果不大。Dovitinib作用于FGF刺激的野生型B9细胞和F384L突变型B9细胞的生长显示出强细胞毒性,IC50为25nM。然而,Dovitinib作用于MINV突变型B9细胞显示出低细胞毒性。Dovitinib抑制下游ERK1/2的磷酸化作用。Dovitinib作用于MV4;11(FLT-3 ITD突变型)时比作用于RS4;11(FLT-3野生型)显示出更高的抗恶性细胞增生的能力。另一方面,Dovitinib也选择性地抑制FGFR1癌基因配体2-FGFR-阳性的KG1和KG1A细胞系,这些细胞系有FGFR1癌基因配体2-FGFR1聚合基因。另外,Dovitinib抑制8p11骨髓增殖综合征(EMS)病人的原代细胞生长。				
体内研究	在KMS-11移植鼠模型中,按鼠体重,每千克处理60mg Dovitinib,导致FGFR3的衰退,结果肿瘤生长抑制率达到94%。在SCID-NOD鼠中,Dovitinib作用于MV4;11肿瘤时显示出强的抗癌活性。Dovitinib也有效抑制能激活FGFR3的KMS-11肿瘤。				
临床实验	N/A				
特征	Dovitinib是MMRC的首要候选药MMRC,促进多发性骨髓瘤药物研究; MMRC是汇合领先学术机构的非盈利机构。				

▶ 相关实验数据(此数据来自于公开文献,碧云天并不保证其有效性):

H2624 # 200 # 200 20 # 200 20 # 200 20 # 200 20 # 200		
酶活性检测实验		
	在体外研究时,Dovitinib溶解在DMSO中,浓度达到20mM,在实验使用前用培养基稀释。FGFR3、	
	FGFR1、PDGFR-β和VEGFR1-3的激酶域在含有如下物质的混合物中测定。混合物包含50mM	
方法	HEPES(pH 7.0)、2mM MgCl ₂ 、10mM MnCl ₂ 、1mM NaF、1mM DTT(二硫苏糖醇)、1mg/ml BSA(牛血清	
	清蛋白)、0.25μM生物肽段基质(GGGGQDGKDYIVLPI)、1到30μM ATP(加量取决于酶的Km值)。测定c-	
	KIT和FLT3的反应,调节PH到7.5,先加入0.25到1μM生物肽段基质(GGLFDDPSYVNVQnl),然后加入	

0.2到8μM ATP。反应在室温下温育1到4小时,磷酸化的肽段移到含有封闭缓冲液(含25mM EDTA和 50mM HEPES, pH为7.5),且包被链霉亲和素的微量滴定板上。使用回归曲线计算IC50值。

	细胞实验
细胞系	B9细胞及多发性骨髓瘤细胞(Y373C、G384D、K650E和J807C)
浓度	400nM左右
处理时间	72小时
方法	MTT实验测细胞活力,B9细胞及多发性骨髓瘤细胞按5×10 ³ 或20×10 ³ 密度接种在96孔板上。细胞加入
	30ng/ml aFGF和100μg/ml肝素或者1% IL-6,及Dovitinib温育72小时,然后测定细胞活力。

动物实验		
动物模型	右侧腹皮下注射KMS-11细胞的雌性BNX鼠	
配制	5mM柠檬酸盐buffer	
剂量	10,30或60mg/kg	
给药方式	饲喂处理	

▶ 参考文献:

- 1.Trudel S, et al. Blood. 2005, 105(7), 2941-2948.
- 2. Huynh H, et al. J Hepatol. 2012, 56(3), 595-601.
- 3.Lee SH, et al. Clin Cancer Res. 2005, 11(10), 3633-3641.
- 4. Azab AK, et al. Clin Cancer Res. 2011, 17(13), 4389-4399.
- 5. Trudel S, et al. Blood. 2005, 105(7), 2941-2948.

包装清单:

DC/13 1		
产品编号	产品名称	包装
SC1036-10mM	Dovitinib (FLT3抑制剂)	10mM×0.2ml
SC1036-5mg	Dovitinib (FLT3抑制剂)	5mg
SC1036-25mg	Dovitinib (FLT3抑制剂)	25mg
_	说明书	1份

保存条件:

-20℃保存,至少一年有效。5mg和25mg包装也可以室温保存,至少6个月有效。如果溶于非DMSO溶剂,建议分装后-80℃保存,预计6个月有效。

注意事项:

- ▶ 本产品对人体有刺激性,操作时请小心,并注意适当防护以避免直接接触人体或吸入体内。
- ▶ 本产品仅限于专业人员的科学研究用,不得用于临床诊断或治疗,不得用于食品或药品,不得存放于普通住宅内。
- ▶ 为了您的安全和健康,请穿实验服并戴一次性手套操作。

使用说明:

- 1. 收到产品后请立即按照说明书推荐的条件保存。使用前可以在2,000-10,000g离心数秒,以使液体或粉末充分沉淀至管底后再开盖使用。
- 2. 对于10mM溶液,可直接稀释使用。对于固体,请根据本产品的溶解性及实验目的选择相应溶剂配制成高浓度的储备液(母液)后使用。
- 3. 具体的最佳工作浓度请参考本说明书中的体外、体内研究结果或其他相关文献,或者根据实验目的,以及所培养的特定细胞和组织,通过实验进行摸索和优化。
- 4. 不同实验动物依据体表面积的等效剂量转换表请参考如下网页: http://www.beyotime.com/support/animal-dose.htm

Version 2017.11.01